
1

MODULE DESCRIPTION FORM

Module Information

Module Title Programming Basics Module Delivery

Module Type C ☒ Theory

 ☒ Lecture

 ☒ Lab

 ☒ Tutorial

 ☒ Practical

 ☐ Seminar

Module Code 201AI1

ECTS Credits 9

SWL (hr/sem) 225

Module Level 1 Semester of Delivery 1

Administering Department Artificial Intelligence College Computer Science and Information Technology

Module Leader Abdulkareem Zwaen e-mail abdulkareem.zouine@uowa.edu.iq

Module Leader’s Acad. Title Lecturer Module Leader’s Qualification Ph.D.

Module Tutor Abdulkareem Zwaen e-mail abdulkareem.zouine@uowa.edu.iq

Peer Reviewer Name Ali Mahmoud Ali e-mail ali.mahmoud@uowa.edu.iq

Scientific Committee Approval
Date

01/11/2025 Version Number 1.0

Relation with other Modules

Prerequisite module None Semester -

Co-requisites module None Semester -

Dean of the College Approval Department Head Approval

mailto:abdulkareem.zouine@uowa.edu.iq
mailto:abdulkareem.zouine@uowa.edu.iq
mailto:ali.mahmoud@uowa.edu.iq

2

Module Aims, Learning Outcomes and Indicative Contents

 Module Objectives

The objectives of this module are to:

1. Introduce students to fundamental programming concepts and problem-

solving techniques using the C++ programming language.

2. Develop students’ understanding of programming paradigms, with emphasis

on the imperative approach and foundational functional concepts.

3. Enable students to understand and apply core C++ language features,

including variables, data types, operators, control structures, and loops.

4. Build a foundational understanding of object-oriented programming concepts

and their implementation in C++.

5. Strengthen students’ ability to analyze computational problems and design

efficient, structured C++ solutions.

6. Prepare students to develop, test, and debug basic C++ applications using

standard libraries and best programming practices.

Module Learning

Outcomes

By the end of this module, students will be able to:

1. Explain the fundamental concepts and terminology associated with

programming languages, with emphasis on imperative and functional

programming paradigms.

2. Apply core C++ programming constructs, including variables, data types,

operators, control structures, and loops, to develop correct programs.

3. Use standard C++ libraries to perform input/output operations and basic

mathematical computations.

4. Design and implement object-oriented programs using key OOP principles

such as encapsulation and modularity.

5. Analyze and solve computational problems by applying structured and

functional programming techniques.

6. Develop, test, and debug C++ programs using appropriate programming

practices and logical reasoning.

Indicative Contents

• Introduction to algorithms and problem-solving techniques

• Overview of programming languages and programming paradigms

• Introduction to C++ programming environment and syntax

• Variables, data types, and user input/output in C++

• Operators, expressions, and logical conditions

• Control structures: if, switch, and decision making

3

• Looping structures: while, do-while, and for loops

• Strings, Boolean values, and mathematical operations in C++

• C++ standard libraries and basic program organization

• Object-oriented programming concepts in C++

• Program testing, debugging, and code optimization

• Development of simple C++ applications

Learning and Teaching Strategies

Strategies

1. Lectures

Core programming concepts, syntax, and paradigms are introduced through

structured lectures, providing students with a solid theoretical foundation in

C++ programming and problem-solving techniques.

2. Guided Practical Sessions

Hands-on programming exercises are used to reinforce lecture material,

allowing students to practice coding, experiment with language constructs,

and gain confidence in writing C++ programs.

3. Problem-Based Learning

Students are engaged in solving progressively complex programming

problems that promote analytical thinking, algorithmic reasoning, and the

application of imperative and functional programming concepts.

4. Demonstrations and Code Walkthroughs

Live demonstrations and step-by-step code walkthroughs are employed to

illustrate program logic, control flow, and debugging techniques.

5. Independent Learning

Students are encouraged to explore additional programming examples,

documentation, and online resources to strengthen self-learning skills and

technical competence.

6. Continuous Feedback and Assessment

Regular quizzes, assignments, and practical tasks provide formative feedback,

enabling students to identify strengths and areas for improvement

throughout the semester.

7. Revision and Exam Preparation Sessions

Dedicated sessions are conducted to review key concepts, clarify common

misconceptions, and prepare students for midterm and final examinations.

4

Student Workload (SWL)

Structured SWL (h/sem) 90 Structured SWL (h/w) 6

Unstructured SWL (h/sem) 135 Unstructured SWL (h/w) 9

Total SWL (h/sem) 225

Module Evaluation

As
Time/Number Weight (Marks) Week Due

Relevant Learning

Outcome

Formative

assessment

Quizzes 5 10% (10) 2,4,6,8,11
LO #1, LO #2, LO #10,

LO #11

Assignments 5 10% (10) 2,3,5,9,12
LO #3, LO #4, LO #6, LO

#7

Projects / Lab. 10 10% (10) Continuous All Learning Outcomes

Report 1 10% (10) 13 LO #5, LO #8, LO #10

Summative

assessment

Midterm Exam 2hr 10% (10) 7 LO #1 – LO #7

Final Exam 3hr 50% (50) 16 All Learning Outcomes

Total assessment 100% (100 Marks)

5

Delivery Plan (Weekly Syllabus)

Week Material Covered

Week 1 Algorithms

Week 2 Introduction to programming languages and C++

Week 3 Variables

Week 4 C++ Libraries

Week 5 C++ User Input

Week 6 C++ Operators

Week 7 Mid-term Exam

Week 8 C++ Strings & C++ Math

Week 9 C++ Booleans

Week 10 If condition

Week 11 Switch condition

Week 12 While loop

Week 13 Do-while loop

Week 14 For loop

Week 15 C++ Break and Continue

Week 16 Preparatory week before the final Exam

6

Delivery Plan (Weekly Lab. Syllabus)

Week Material Covered

Week 1 C++ Libraries

Week 2 C++ User Input

Week 3 C++ Operators

Week 4 If condition

Week 5 Switch condition

Week 6 While loop

Week 7 Do-while loop

Week 8 For loop

Week 9 C++ Break and Continue

Learning and Teaching Resources
 Text Available in the Library?

Required Texts
The C++ Programming Language (4th Edition) by Bjarne

Stroustrup
No

Recommended

Texts

Stroustrup, B. (2013). The C++ Programming Language (4th

ed.).

Deitel, P., & Deitel, H. (2020). C++ How to Program (10th ed.).

Websites https://www.learncpp.com https://www.w3schools.com/CPP/default.asp

https://www.learncpp.com/
https://www.w3schools.com/CPP/default.asp

7

 Grading Scheme

Group Grade Mark Marks % Definition

Success Group

(50 - 100)

A - Excellent Excellent 90 - 100 Outstanding Performance

B - Very Good Very Good 80 - 89 Above average with some errors

C - Good Good 70 - 79 Sound work with notable errors

D - Satisfactory Fair / Average 60 - 69 Fair but with major shortcomings

E - Sufficient Pass / Acceptable 50 - 59 Work meets minimum criteria

Fail Group

(0 – 49)

FX – Fail Fail (Pending) (45-49) More work required but credit awarded

F – Fail Fail (0-44) Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark

of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to

condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic

rounding outlined above.

