e
\Q' ‘_

&
F
L

Lum

2!:!25

MODULE DESCRIPTION FORM me

5 AR
\‘u *4"

““a

T
;]

%

MWHH—‘-I-FHU-‘
Module Information
Module Title Programming Basics Module Delivery
Module Type C X Theory
X]
Module Code AI1102 Lecture
Lab
ECTS Credits 9 Tutorial
X Practical
SWL (hr/sem) 225 O Seminar
Module Level 1 Semester of Delivery 1

Administering Department

Artificial Intelligence

College

Computer Science and Information Technology

Module Leader

Abdulkareem Zwaen

e-mail

abdulkareem.zouine@uowa.edu.iq

Module Leader’s Acad. Title

Lecturer

Module Leader’s Qualification

Ph.D.

Module Tutor Abdulkareem Zwaen e-mail abdulkareem.zouine@uowa.edu.iq
Peer Reviewer Name Ali Mahmoud Ali e-mail ali.mahmoud@uowa.edu.iq

ientifi . A I
Scientific Committee Approva 01/11/2025 Version Number 1.0
Date

Relation with other Modules

Prerequisite module None Semester
Co-requisites module None Semester

Department Head Approval

Dean of the College Approval

mailto:abdulkareem.zouine@uowa.edu.iq
mailto:abdulkareem.zouine@uowa.edu.iq
mailto:ali.mahmoud@uowa.edu.iq

Module Aims, Learning Outcomes and Indicative Contents

Module Objectives

The objectives of this module are to:

1.

Introduce students to fundamental programming concepts and problem-

solving techniques using the C++ programming language.

Develop students’ understanding of programming paradigms, with emphasis

on the imperative approach and foundational functional concepts.

Enable students to understand and apply core C++ language features,

including variables, data types, operators, control structures, and loops.

Build a foundational understanding of object-oriented programming concepts

and their implementation in C++.

Strengthen students’ ability to analyze computational problems and design

efficient, structured C++ solutions.

Prepare students to develop, test, and debug basic C++ applications using

standard libraries and best programming practices.

Module Learning
Outcomes

By the end of this module, students will be able to:

1.

Explain the fundamental concepts and terminology associated with
programming languages, with emphasis on imperative and functional
programming paradigms.

Apply core C++ programming constructs, including variables, data types,
operators, control structures, and loops, to develop correct programs.

Use standard C++ libraries to perform input/output operations and basic
mathematical computations.

Design and implement object-oriented programs using key OOP principles
such as encapsulation and modularity.

Analyze and solve computational problems by applying structured and
functional programming techniques.

Develop, test, and debug C++ programs using appropriate programming

practices and logical reasoning.

Indicative Contents

Introduction to algorithms and problem-solving techniques
Overview of programming languages and programming paradigms
Introduction to C++ programming environment and syntax
Variables, data types, and user input/output in C++

Operators, expressions, and logical conditions

Control structures: if, switch, and decision making

Looping structures: while, do-while, and for loops

Strings, Boolean values, and mathematical operations in C++
C++ standard libraries and basic program organization
Object-oriented programming concepts in C++

Program testing, debugging, and code optimization

Development of simple C++ applications

Learning and Teaching Strategies

Strategies

Lectures

Core programming concepts, syntax, and paradigms are introduced through
structured lectures, providing students with a solid theoretical foundation in
C++ programming and problem-solving techniques.

Guided Practical Sessions

Hands-on programming exercises are used to reinforce lecture material,
allowing students to practice coding, experiment with language constructs,
and gain confidence in writing C++ programs.

Problem-Based Learning

Students are engaged in solving progressively complex programming
problems that promote analytical thinking, algorithmic reasoning, and the
application of imperative and functional programming concepts.
Demonstrations and Code Walkthroughs

Live demonstrations and step-by-step code walkthroughs are employed to
illustrate program logic, control flow, and debugging techniques.
Independent Learning

Students are encouraged to explore additional programming examples,
documentation, and online resources to strengthen self-learning skills and
technical competence.

Continuous Feedback and Assessment

Regular quizzes, assignments, and practical tasks provide formative feedback,
enabling students to identify strengths and areas for improvement
throughout the semester.

Revision and Exam Preparation Sessions

Dedicated sessions are conducted to review key concepts, clarify common
misconceptions, and prepare students for midterm and final examinations.

Student Workload (SWL)

Structured SWL (h/sem) 90 Structured SWL (h/w) 6
Unstructured SWL (h/sem) 135 Unstructured SWL (h/w) 9
Total SWL (h/sem) 225

Module Evaluation

Relevant Learning

Time/Number Weight (Marks) Week Due
Outcome
LO #1, LO #2, LO #10,
Quizzes 5 10% (10) 2,4,6,8,11
LO #11
Formative LO #3, LO #4, LO #6, LO
Assignments 5 10% (10) 2,3,5,9,12
assessment #7
Projects / Lab. 10 10% (10) Continuous | All Learning Outcomes
Report 1 10% (10) 13 LO #5, LO #8, LO #10
Summative Midterm Exam 2hr 10% (10) 7 LO #1 - LO #7
assessment Final Exam 3hr 50% (50) 16 All Learning Outcomes

Total assessment

100% (100 Marks)

Delivery Plan (Weekly Syllabus)

Material Covered

Week 1

Algorithms
Week2 | |ntroduction to programming languages and C++
Week 3 | yariables
Week 4 C++ Libraries
Week 5 | c4+ User Input
Week6 | c++ Operators
Week 7 Mid-term Exam
Week8 | 4+ Strings & C++ Math
Week9 | c++ Booleans
Week 10 | |f condition
Week 11 | switch condition
Week 12 | \while loop
Week 13 Do-while loop
Week 14 | ror Joop
Week 15 | 44 Break and Continue
Week 16 | Preparatory week before the final Exam

Delivery Plan (Weekly Lab. Syllabus)

Material Covered

Week1 | cit Libraries

Week2 | ci4 User Input

Week3 | ¢+ Operators

Week4 | jf condition

Week5 | switch condition

Week 6 | while loop

Week 7 Do-while loop

Week 8 For loop

Week 9 C++ Break and Continue

Learning and Teaching Resources

Text

Available in the Library?

Required Texts

The C++ Programming Language (4th Edition) by Bjarne

No

Stroustrup
Stroustrup, B. (2013). The C++ Programming Language (4th
Recommended
ed.).
Texts
Deitel, P., & Deitel, H. (2020). C++ How to Program (10th ed.).
Websites https://www.learncpp.com https://www.w3schools.com/CPP/default.asp

https://www.learncpp.com/
https://www.w3schools.com/CPP/default.asp

Grading Scheme

Group Grade Mark Marks % Definition

A - Excellent Excellent 90-100 Outstanding Performance

B - Very Good Very Good 80-89 Above average with some errors
Success Group

C - Good Good 70-79 Sound work with notable errors
(50 - 100)

D - Satisfactory Fair / Average 60 - 69 Fair but with major shortcomings

E - Sufficient Pass / Acceptable | 50-59 Work meets minimum criteria
Fail Group FX - Fail Fail (Pending) (45-49) More work required but credit awarded
(0 -49) F - Fail Fail (0-44) Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark
of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to
condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic
rounding outlined above.

