MODULE DESCRIPTION FORM Luml
) 3l i 5 2oy

Module Information
Aol ) 5ol e shas

Module Title Programming Fundamentals | Module Delivery
Module Type Core Theory
Module Code CYS1103 Lecture
ECTS Credits 7 X Lab
O Tutorial
.
SWL (hr/sem) 175 X Practical
U] Seminar
Module Level UGl Semester of Delivery 1
Administering Department Cybersecurity College College o‘f Computer Science &
Information Technology
Module Leader Ali Kareem Abdul Raheem e-mail alialmujab@uowa.edu.iq
Module Leader’s Acad. Title Lecturer Module Leader’s Qualification Ph.D.
Module Tutor Ali Kareem Abdul Raheem e-mail alialmujab@uowa.edu.iq
Peer Reviewer Name Nabil Sadiq Abdul abbas |e-mail ~ [abeel@uowa.edu.ig
Scientific Committee Approval 24/12/2025 Version Number | 1.0
Date
Relation with other Modules
6 AY) Ll jal) 2 gall g Zal
Prerequisite module None Semester
Co-requisites module None Semester
' /
A
"_.-/d_‘J:J '—L;J =& ~
[/A_.-Jl-'"'gr,"_ju‘llj.J.l‘ fjlcf\f‘/,‘f*/).,»l
— ' - = ¥
Gooadl =Y &, -\//—“-"‘”
T eag —Cn g i C-cN =
Department Head Approval Dean of the College Approval



mailto:alialmujab@uowa.edu.iq
mailto:alialmujab@uowa.edu.iq
mailto:nabeel@uowa.edu.iq

Module Aims, Learning Outcomes and Indicative Contents
Aoyl lgimally wlaill 7659 dnasll B3Loll L]

1. Introduction to Programming: The module aims to introduce students to the
fundamental concepts and principles of programming. It provides an
overview of programming languages, their purpose, and their role in
software development.

2. Basic Programming Constructs: The module aims to familiarize students with
the basic programming constructs such as variables, data types, operators,
and expressions. It focuses on teaching them how to use these constructs to
write simple programs.

3. Control Structures: The module aims to introduce students to control
structures such as loops and conditionals. It teaches them how to use these
structures to control the flow of program execution and make decisions
based on certain conditions.

4. Functions and Procedures: The module aims to teach students about
functions and procedures, their purpose, and how to define and use them in
programming. It focuses on modular programming and code reusability.

5. Input/Output Operations: The module aims to familiarize students with
input/output operations in programming. It covers techniques for reading
input from the user, displaying output, and interacting with files.

6. Problem-Solving Skills: The module aims to develop students' problem-
solving skills by presenting them with programming challenges and exercises.
It emphasizes the importance of breaking down problems into smaller steps,
designing algorithms, and implementing solutions using programming
constructs.

7. Debugging and Troubleshooting: The module aims to equip students with
skills in identifying and resolving common programming errors. It teaches
them techniques for debugging code, tracing program execution, and
handling errors effectively.

Module Aims
Lyl B! Ol

1. Understand the basic concepts of programming: Students should be able to
explain the fundamental concepts of programming, including variables, data
types, control structures, and functions.

2. Write and run simple programs: Students should be able to write simple
programs using a programming language, demonstrating an understanding of
basic syntax and semantics. They should be able to compile or interpret their
programs and execute them successfully.

Outcomes 3. Apply problem-solving techniques: Students should be able to analyze and

Ayl 8okl ladl lox o break down simple problems into smaller, manageable tasks. They should
demonstrate the ability to design algorithms and implement solutions using
appropriate programming constructs.

4. Use programming constructs effectively: Students should be able to utilize

Module Learning

programming constructs such as loops, conditionals, and functions to control
program flow, make decisions, and perform repetitive tasks.

5. Debug and troubleshoot programs: Students should be able to identify and
correct common errors in their programs. They should be able to use
debugging techniques and employ strategies to troubleshoot their code




effectively.

6. Demonstrate basic data manipulation skills: Students should be able to work
with basic data structures such as arrays, lists, or strings. They should
demonstrate proficiency in manipulating and accessing data stored in these
structures.

7. Apply input/output operations: Students should be able to incorporate
input/output operations into their programs. They should demonstrate the
ability to read input from users, display output, and interact with files as
needed.

8. Understand basic software development principles: Students should have an
awareness of software development principles such as code organization,
code reusability, and modularity. They should be able to write clear,
readable, and maintainable code following coding conventions and best
practices.

9. Collaborate effectively in programming projects: Students should
demonstrate the ability to work collaboratively in a programming project,
effectively communicating with team members, sharing code, and using
version control systems.

Indicative Contents

%.)L&J}‘” Oy_glzw

The indicative contents of a programming fundamentals include the following
topics:
1. Introduction to Programming:
o Definition and importance of programming
o Overview of programming languages and their uses
o Introduction to a specific programming language (e.g., Python) and
its features
2. Variables and Data Types:

o Introduction to variables and their purpose
o Basic data types (e.g., integers, floating-point numbers, strings,
booleans)
o Variable declaration and assignment
3. Control Structures:

o Introduction to control structures (e.g., if statements, loops)
o Conditional statements (e.g., if-else, nested if statements)
o Looping structures (e.g., while loop, for loop)

4. Functions and Procedures:

o Definition and purpose of functions
o Function declaration and invocation
o Passing arguments to functions and returning values
o Introduction to predefined functions and libraries

5. Problem Solving and Algorithmic Thinking:

Understanding and defining problems

Breaking down problems into smaller tasks
Developing algorithms and step-by-step solutions
Translating algorithms into code

o O O O




Learning and Teaching Strategies

auladl g aladl) ]

Strategies

When teaching programming fundamentals to first-grade students in an
Information Technology department, it is important to employ strategies that
are suitable for their age and learning level. Here are some effective strategies:

1.

Hands-on Activities: Use interactive and hands-on activities to engage
students actively in the learning process. For example, provide puzzles,
games, or physical objects that represent programming concepts like
variables or loops. This approach helps make abstract concepts more
tangible and enjoyable.

Visual Representations: Utilize visual aids such as diagrams,
flowcharts, or illustrations to help students visualize programming
concepts. Visual representations can assist in understanding the flow of
program execution, the relationship between different programming
constructs, and the logic behind algorithms.

Gamification: Integrate gamification elements into programming
exercises and assignments. Create coding challenges, competitions, or
educational games that motivate students to apply programming
concepts creatively. This approach promotes active learning, problem-
solving, and healthy competition among students.

Collaborative Learning: Encourage collaborative learning by
facilitating group projects or pair programming activities. Collaborative
learning fosters communication, teamwork, and the exchange of ideas
among students. It also allows students to learn from each other and
collectively solve programming problems.

Step-by-Step Approach: Break down programming concepts into small,
manageable steps. Start with simple and concrete examples before
moving on to more complex topics. Provide clear instructions and
explanations, demonstrating each step in the process. This incremental
approach helps students grasp concepts gradually and build their
programming skills effectively.

Real-Life Examples: Connect programming concepts to real-life
scenarios that students can relate to. Use examples from everyday
situations, such as creating a program to calculate the total cost of items
in a shopping cart or simulating a traffic light system. Relating
programming to real-world applications makes it more relevant and
engaging for students.

Interactive Online Resources: Utilize interactive online resources,
educational programming games, or kid-friendly coding platforms
specifically designed for young learners. These resources often provide
interactive tutorials, visual programming environments, and immediate
feedback, making the learning experience more interactive and
enjoyable.

Individualized Support: Provide individualized support and feedback to
students. Offer assistance to those who are struggling and provide
additional challenges to those who grasp concepts quickly. Regularly




assess students’ progress and address their specific learning needs to
ensure that they are making steady progress.

9. Encourage Creativity: Foster creativity by encouraging students to think
creatively and find innovative solutions to programming problems.
Provide opportunities for them to apply programming concepts in
creative projects, such as designing simple games or creating
animations. This approach encourages critical thinking, problem-
solving, and the exploration of their own ideas.

10. Reflective Practice: Incorporate reflection and self-assessment activities
into the learning process. Encourage students to review their own code,
identify areas for improvement, and reflect on their problem-solving
approaches. This reflective practice helps students develop a deeper
understanding of programming concepts and improves their ability to
analyze and debug their code.

Student Workload (SWL)
e gl 15JQW;_JLLH@\JJ\ Jaall
Structured SWL (h/sem) Structured SWL (h/w)
il I35 Ll elisiall gulyl Jaoo) 78 L gl Ml il gyl Jand 5
Unstructured SWL (h/sem) Unstructured SWL (h/w)
Jadll M5 Ll bl g gyl o 97 L gl (Ml laiall 1 gl Judl 7
Total SWL (h/sem)
bl g5 lall 1 gyl Jad 175
Module Evaluation
Jlal q:{ggﬁ‘ povE)
. Relevant Learning
Time/Number Weight (Marks) | Week Due Outcome
Quizzes 5 8% (8) 2,4,5,7,9 1,2,3,4
Projects 1 5% (5) 10 All
Attendance and 10 15% (15) 2,3,4,5,6,7, ”
Lab execution 8,9,10,11 A
. 2,3,4,5,7
REERTS H. W. 5 7% (7) 2,4,5,7,9
assessment 8,9,10,11
Weekly Class 2,3,4,5,6,7,
Activity with 5 5% (5) 8,9,10,11 All
Attendance
Formative assessment 40%(40)
Summative Midterm Exam 2hr 10%(10) 7
assessment Final Exam 3hr 50% (50) 16 Al

Total assessment

100% (100 Marks)




Delivery Plan (Weekly Syllabus)

Material Covered

Week 1 Introduction to Programing Fundamentals

Week2 | earn how to change problem to algorithm

Week3 | pseudo Code and Flowchart

Week 4 Variables, Assignment Statements, and Expressions

Week 5 Augmented Assignment Operators

Week 6 | Epcode characters using ASCII

Week 7 MidTerm Exam

Week8 | (ase Study: Minimum Number of Coins

Week 9 Write Boolean expressions using comparison operators
Week 10 | fStatements and Common Errors in Selection Statements
Week 11

Logical Operators and Generating Random Numbers

Week 12 | 1,0ps and Nested loop

Week 13 | Keywords Break and Continue

Week 14 | Preparation for final exam

Delivery Plan (Weekly Lab. Syllabus)

Material Covered

Week 1 Lab 1: Introduction to Programming Fundamentals

Week 2 Lab 2: Getting started with C++

Week 3 Lab 3: Reading Input from the Console

Week 4 Lab 4: learn variables

Week 5 Lab 5: learn Assignment Statements, and Expressions

Week 6 | Lab 6: Read strings from the keyboard and Encode characters using ASCII

Week 7 MidTerm Exam

Week 8 Lab 8: Write Boolean expressions using comparison operators

Week 9 Lab 9: implement if Statements

Week 10 Lab 10:learn how to read Common Errors in Selection Statements

Week 11 | Lab 11:learn Logical Operators

Week 12 Lab 12: Generating Random Numbers

Week 13 Lab 13: while loop, for loop, and Nested loop

Week 14 | Preparation for final exam




Learning and Teaching Resources
U“.‘.)ﬂ‘} ela.”\]\ )ALAA

Available in the
Text
Library?

C++:The Complete Reference, Fourth Edition
Herbert Schildt

McGraw-Hill/Osborne

Required Texts New York Chicago San Francisco No
Lisbon London Madrid Mexico City
Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

e i e Un?\?eer!;;alch, prof. Department of IT-AL-Balga Applied No
Websites https://www.w3schools.com/cpp/cpp_intro.asp
Grading Scheme
Group Grade gest] Marks (%) | Definition
A - Excellent Hlial 90 - 100 Outstanding Performance
B - Very Good STV 80 -89 Above average with some errors
(S:(;:(-:elsgoc;'roup C - Good > 70-79 Sound work with notable errors
D - Satisfactory baugio 60 - 69 Fair but with major shortcomings
E - Sufficient Jgudo 50-59 Work meets minimum criteria
Fail Group FX - Fail (Al W8) cwsl) | (45-49) More work required but credit awarded
(0-49) F - Fail W) (0-44) Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a
mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT
to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the
automatic rounding outlined above.




