
1  

MODULE DESCRIPTION FORM 

 ةالدراسي   المادة  وصف نموذج
Module Information 

 الدراسية   المادة   معلومات 

Module Title Programming Fundamentals I Module Delivery 

Module Type Core ☒ Theory 

☒ Lecture 

☒ Lab 

☐ Tutorial 

☒ Practical 

☐ Seminar 

Module Code CYS1103 

ECTS Credits 7 

 
SWL (hr/sem) 

 

175 

Module Level UG1 Semester of Delivery 1 

Administering Department Cybersecurity College 
College of Computer Science & 
Information Technology 

Module Leader Ali Kareem Abdul Raheem e-mail alialmujab@uowa.edu.iq  

Module Leader’s Acad. Title Lecturer Module Leader’s Qualification Ph.D. 

Module Tutor Ali Kareem Abdul Raheem e-mail alialmujab@uowa.edu.iq  

Peer Reviewer Name Nabil Sadiq Abdul abbas  e-mail nabeel@uowa.edu.iq  

Scientific Committee Approval 
Date 

24/12/2025 Version Number 1.0 

 
 

 

Relation with other Modules 

 الأخرى  الدراسية  المواد  مع   العلاقة

Prerequisite module None Semester  

Co-requisites module None 
 

Semester  

 \

Dean of the College Approval Department Head Approval 

mailto:alialmujab@uowa.edu.iq
mailto:alialmujab@uowa.edu.iq
mailto:nabeel@uowa.edu.iq


2  

Module Aims, Learning Outcomes and Indicative Contents 

 الإرشادية  والمحتويات  التعلم  ونتائج   الدراسية   المادة   أهداف 

 
 
 
 
 
 
 
 
 
 
 

 
Module Aims 

 الدراسية   المادة   أهداف 

 
1. Introduction to Programming: The module aims to introduce students to the 

fundamental concepts and principles of programming. It provides an 

overview of programming languages, their purpose, and their role in 

software development. 

2. Basic Programming Constructs: The module aims to familiarize students with 

the basic programming constructs such as variables, data types, operators, 

and expressions. It focuses on teaching them how to use these constructs to 

write simple programs. 

3. Control Structures: The module aims to introduce students to control 

structures such as loops and conditionals. It teaches them how to use these 

structures to control the flow of program execution and make decisions 

based on certain conditions. 

4. Functions and Procedures: The module aims to teach students about 

functions and procedures, their purpose, and how to define and use them in 

programming. It focuses on modular programming and code reusability. 

5. Input/Output Operations: The module aims to familiarize students with 

input/output operations in programming. It covers techniques for reading 

input from the user, displaying output, and interacting with files. 

6. Problem-Solving Skills: The module aims to develop students' problem- 

solving skills by presenting them with programming challenges and exercises. 

It emphasizes the importance of breaking down problems into smaller steps, 

designing algorithms, and implementing solutions using programming 

constructs. 

7. Debugging and Troubleshooting: The module aims to equip students with 

skills in identifying and resolving common programming errors. It teaches 

them techniques for debugging code, tracing program execution, and 

handling errors effectively. 

 
 
 
 

 
Module Learning 

Outcomes 

 الدراسية مخرجات التعلم للمادة  

1. Understand the basic concepts of programming: Students should be able to 

explain the fundamental concepts of programming, including variables, data 

types, control structures, and functions. 

2. Write and run simple programs: Students should be able to write simple 

programs using a programming language, demonstrating an understanding of 

basic syntax and semantics. They should be able to compile or interpret their 

programs and execute them successfully. 

3. Apply problem-solving techniques: Students should be able to analyze and 

break down simple problems into smaller, manageable tasks. They should 

demonstrate the ability to design algorithms and implement solutions using 

appropriate programming constructs. 

4. Use programming constructs effectively: Students should be able to utilize 

programming constructs such as loops, conditionals, and functions to control 

program flow, make decisions, and perform repetitive tasks. 

5. Debug and troubleshoot programs: Students should be able to identify and 

correct common errors in their programs. They should be able to use 

debugging techniques and employ strategies to troubleshoot their code 



3  

 effectively. 

6. Demonstrate basic data manipulation skills: Students should be able to work 

with basic data structures such as arrays, lists, or strings. They should 

demonstrate proficiency in manipulating and accessing data stored in these 

structures. 

7. Apply input/output operations: Students should be able to incorporate 

input/output operations into their programs. They should demonstrate the 

ability to read input from users, display output, and interact with files as 

needed. 

8. Understand basic software development principles: Students should have an 

awareness of software development principles such as code organization, 

code reusability, and modularity. They should be able to write clear, 

readable, and maintainable code following coding conventions and best 

practices. 

9. Collaborate effectively in programming projects: Students should 

demonstrate the ability to work collaboratively in a programming project, 

effectively communicating with team members, sharing code, and using 

version control systems. 

 
 
 
 
 
 
 
 
 
 

 
Indicative Contents 

 الإرشادية   المحتويات 

The indicative contents of a programming fundamentals include the following 

topics: 

1. Introduction to Programming: 
o Definition and importance of programming 
o Overview of programming languages and their uses 
o Introduction to a specific programming language (e.g., Python) and 

its features 

2. Variables and Data Types: 

o Introduction to variables and their purpose 
o Basic data types (e.g., integers, floating-point numbers, strings, 

booleans) 
o Variable declaration and assignment 

3. Control Structures: 

o Introduction to control structures (e.g., if statements, loops) 
o Conditional statements (e.g., if-else, nested if statements) 
o Looping structures (e.g., while loop, for loop) 

4. Functions and Procedures: 

o Definition and purpose of functions 
o Function declaration and invocation 
o Passing arguments to functions and returning values 
o Introduction to predefined functions and libraries 

5. Problem Solving and Algorithmic Thinking: 

o Understanding and defining problems 
o Breaking down problems into smaller tasks 
o Developing algorithms and step-by-step solutions 
o Translating algorithms into code 



4  

Learning and Teaching Strategies 

 والتعليم   التعلم   استراتيجيات

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Strategies 

When teaching programming fundamentals to first-grade students in an 

Information Technology department, it is important to employ strategies that 

are suitable for their age and learning level. Here are some effective strategies: 

1. Hands-on Activities: Use interactive and hands-on activities to engage 

students actively in the learning process. For example, provide puzzles, 
games, or physical objects that represent programming concepts like 

variables or loops. This approach helps make abstract concepts more 
tangible and enjoyable. 

2. Visual Representations: Utilize visual aids such as diagrams, 

flowcharts, or illustrations to help students visualize programming 
concepts. Visual representations can assist in understanding the flow of 

program execution, the relationship between different programming 
constructs, and the logic behind algorithms. 

3. Gamification: Integrate gamification elements into programming 

exercises and assignments. Create coding challenges, competitions, or 
educational games that motivate students to apply programming 

concepts creatively. This approach promotes active learning, problem- 
solving, and healthy competition among students. 

4. Collaborative Learning: Encourage collaborative learning by 

facilitating group projects or pair programming activities. Collaborative 
learning fosters communication, teamwork, and the exchange of ideas 

among students. It also allows students to learn from each other and 

collectively solve programming problems. 

5. Step-by-Step Approach: Break down programming concepts into small, 

manageable steps. Start with simple and concrete examples before 
moving on to more complex topics. Provide clear instructions and 

explanations, demonstrating each step in the process. This incremental 
approach helps students grasp concepts gradually and build their 

programming skills effectively. 

6. Real-Life Examples: Connect programming concepts to real-life 

scenarios that students can relate to. Use examples from everyday 

situations, such as creating a program to calculate the total cost of items 

in a shopping cart or simulating a traffic light system. Relating 

programming to real-world applications makes it more relevant and 

engaging for students. 

7. Interactive Online Resources: Utilize interactive online resources, 

educational programming games, or kid-friendly coding platforms 
specifically designed for young learners. These resources often provide 

interactive tutorials, visual programming environments, and immediate 
feedback, making the learning experience more interactive and 

enjoyable. 

8. Individualized Support: Provide individualized support and feedback to 

students. Offer assistance to those who are struggling and provide 

additional challenges to those who grasp concepts quickly. Regularly 



5  

 assess students' progress and address their specific learning needs to 

ensure that they are making steady progress. 

9. Encourage Creativity: Foster creativity by encouraging students to think 

creatively and find innovative solutions to programming problems. 

Provide opportunities for them to apply programming concepts in 
creative projects, such as designing simple games or creating 

animations. This approach encourages critical thinking, problem- 
solving, and the exploration of their own ideas. 

10. Reflective Practice: Incorporate reflection and self-assessment activities 

into the learning process. Encourage students to review their own code, 

identify areas for improvement, and reflect on their problem-solving 

approaches. This reflective practice helps students develop a deeper 

understanding of programming concepts and improves their ability to 

analyze and debug their code. 

 

Student Workload (SWL) 

 اسبوعا   15 لـ  محسوب  للطالب  الدراسي  الحمل 
Structured SWL (h/sem) 

 78 الفصل  خلال  للطالب  المنتظم  الدراس    الحمل        
Structured SWL (h/w) 

 5 أسبوعيا   للطالب   المنتظم   الدراس    الحمل

Unstructured SWL (h/sem) 

 الفصل  خلال  للطالب  المنتظم  الدراس  غي    الحمل
 
97 

Unstructured SWL (h/w) 

 7 أسبوعيا  للطالب   المنتظم  الدراس  غي    الحمل

Total SWL (h/sem) 

 175 الفصل  خلال  للطالب   الدراس  الكل    الحمل      

 

Module Evaluation 
  
للطالب   التقييم التكوين   

 Time/Number Weight (Marks) Week Due 
Relevant Learning 

Outcome 

Formative 

assessment 

Quizzes 5 8% (8) 2, 4, 5, 7, 9 1, 2, 3, 4 

Projects 1 5% (5) 10 All 

Attendance and    

Lab execution 
10 15% (15) 2, 3, 4, 5, 6, 7, 

8, 9, 10, 11 

 
All 

H. W. 5 7% (7) 2, 4, 5, 7, 9 
2, 3, 4, 5, 7 

8, 9, 10, 11 

Weekly Class   2, 3, 4, 5, 6, 7,  

Activity with 5 5% (5) 8, 9, 10, 11 All 

Attendance     

Formative assessment 40%(40)  

Summative 

assessment 

Midterm Exam 2hr 10%(10) 7 
All Final Exam 3hr 50% (50) 16 

Total assessment 100% (100 Marks) 



6  

Delivery Plan (Weekly Syllabus) 

 Material Covered 

Week 1 Introduction to Programing Fundamentals 

Week 2 Learn how to change problem to algorithm 

Week 3 Pseudo Code and Flowchart 

Week 4 Variables, Assignment Statements, and Expressions 

Week 5 Augmented Assignment Operators 

Week 6 Encode characters using ASCII 

Week 7 MidTerm Exam 

Week 8 Case Study: Minimum Number of Coins 

Week 9 Write Boolean expressions using comparison operators 

Week 10 if Statements and Common Errors in Selection Statements 

Week 11 Logical Operators and Generating Random Numbers 

Week 12 Loops and Nested loop 

Week 13 Keywords Break and Continue 

Week 14 Preparation for final exam 

 

Delivery Plan (Weekly Lab. Syllabus) 

 Material Covered 

Week 1 Lab 1: Introduction to Programming Fundamentals 

Week 2 Lab 2: Getting started with C++ 

Week 3 Lab 3: Reading Input from the Console 

Week 4 Lab 4: learn variables 

Week 5 Lab 5: learn Assignment Statements, and Expressions 

Week 6 Lab 6: Read strings from the keyboard and Encode characters using ASCII 

Week 7 MidTerm Exam 

Week 8 Lab 8: Write Boolean expressions using comparison operators 

Week 9 Lab 9: implement if Statements 

Week 10 Lab 10:learn how to read Common Errors in Selection Statements 

Week 11 Lab 11: learn Logical Operators 

Week 12 Lab 12: Generating Random Numbers 

Week 13 Lab 13: while loop, for loop, and Nested loop 

Week 14 Preparation for final exam 

 

 



7  

Learning and Teaching Resources 

 والتدريس   التعلم   مصادر

 
Text 

Available in the 

Library? 

 
 

 
Required Texts 

C++:The Complete Reference, Fourth Edition 

Herbert Schildt 

McGraw-Hill/Osborne 

New York Chicago San Francisco 

Lisbon London Madrid Mexico City 

Milan New Delhi San Juan 

Seoul Singapore Sydney Toronto 

 
 

 
No 

Recommended Texts 
    OqeiliSalch, prof. Department of IT-AL-Balqa Applied 

University 

No 

Websites      https://www.w3schools.com/cpp/cpp_intro.asp 

 

 

Grading Scheme 
 الدرجات  مخطط

Group Grade التقدير Marks (%) Definition 

 
Success Group 
(50 - 100) 

A - Excellent 100 - 90 امتياز Outstanding Performance 

B - Very Good  89 - 80 جدا  جيد Above average with some errors 

C - Good  79 - 70 جيد Sound work with notable errors 

D - Satisfactory 69 - 60 متوسط Fair but with major shortcomings 

E - Sufficient 59 - 50 مقبول Work meets minimum criteria 

Fail Group 
(0 – 49) 

FX – Fail (49-45) )المعالجة   قيد( راسب More work required but credit awarded 

F – Fail (44-0) راسب Considerable amount of work required 

     

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a 
mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT 
to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the 
automatic rounding outlined above. 

 


