Course Description Form

1. Course Name:

Steel structure/ 2nd

2. Course Code:

Steel structure/ 2nd

3. Semester / Year:

(Course System)/2023-2024

4. Description Preparation Date:

20/3/2024

5. Available Attendance Forms:

Theoretical Classes

6. Number of Credit Hours (Total) / Number of Units (Total)

60 hrs./2

7. Course administrator's name (mention all, if more than one name)

Name: Asst. Lect. Tabarak hussein Email: tabarak.hu@uowa.edu.iq

8. Course Objectives

Course Objectives

- Introducing students to the basic principles of steel structure designs in civil engineering
- Introducing students to the applications of steel structures in practice
- The basics that are adopted in the analysis and design of the structural members

of the steel structure

 Identify the analysis and design of members exposed to tensile, compressive,

bending and shear forces, as well as types of connection.....

9. Teaching and Learning Strategies

Strategy

- Design and analysis of members exposed to tensile forces of steel sections and manufactured
- Design and analysis of the members exposed to the compression forces (columns) of the steel sections of the processed and manufactured and as well as the design of the steel base for columns
- Design and analysis of beams exposed to bending and shearing forces of the rigid steel sections
- Design and analysis of beams and columns exposed to dualbending, tensile

or compressive forces of the steel sections

- Design and analysis of types of fastening for steel sections (bonding using welding and bolts)
- Knowing all the steel sections, their applications and specificatio

10. Course Structure

Week	Hours	Required Learning	Unit or subject	Learning method	Evaluation
		Outcomes	name		method
5-19	20	design of beam for moments, shear and deflection Bending and axial compression (beam-columns	Introduction, plastic behavior (zone1), beam weight estimates, design of beams -zone 1(full plastic moment), lateral supports of beams Inelastic buckling (zone 2), bending coefficients, moment capacities (zone2). Design of beams-zone3, elastic buckling (zone3), AISC Beam design charts, noncompact sections design for shear deflections, unsymmetrical bending, and design of base plates for concentrically loaded columns, Bending and axial compression.	and analytical	

			Beam Columns, first	
			order and second order	
			moments, analysis.	
			effective length,	
		approximate second		
			order analysis method .	
			magnification factors,	
			moment modification	
			factors, design of	
			beam- columns in	
			braced frames.	
			design of be	
			columns	
			unbraced fran	
			AISC-Part6 Tak	
			and equivalent a	
			load method.	
25-26	8	Bolted connection	joints, pretension	
	0		joints, slip-critical	
			joints, fully	
			pretensioning	
			methods, bearing type	
			connections, slip-	
			resistance connections	
			shear strength and	
			bearing strength for	
			bearing type	
			connections (load pass	
			through center of	
			gravity of connection).	
			strength for	
			critical connect	
			(load pass thro	
			center of gravit	
			connection), s	
			of bolt holes, I	
			transfer, lap jo	
			butt joint, failur	
			bolted joints,	
			minimum	
			maximum	
27-28	8	Eccentrically	Bolts subjected to	
		loaded	eccentric shear, Elastic	
		bolted connections	analysis method,	
			reduced eccentricity	
			method, instantaneous	
			center of rotation	
			method	
			AISC-Part7 Tak	
			bearing-type	
			connections	
			subjected to sh	
			and tension,	
			critical connect	
			subjected to sh	
			and tension.	
29-30	8	Welded connections	Welding advantages,	
			types of welding.	

classification of welds,
type of weld, type of
joints, fillet welds, plug
and slot welds, welding
symbols, strength of
welds, AISC
requirements,
size and length
limitations of fillet
welds, design of simple
fillet welds, 8 strength
of fillet welds loaded
transversely,
design of wel
connections
both longitud
and transverse f
welds, design
fillet welds for t
members, strer
of plug and
welds.

11. Course Evaluation

- Oral examination during daily classes. (4/100)
- Joined discussions during lectures. (3/100)
- Attendance. (3/100)
- Monthly examinations (30/100)
- Mid-year examinations. (60/100)

12. Learning and Teaching Resources					
Required textbooks (curricular books, if any)	AISC Manual 15 th edition Structural Steel Design 5th edition, Jack C. McCormac				
Main references (sources)	AISC Manual 15 th edition Structural Steel Design 5th edition, Jack C. McCormac				
Recommended books and references (scientific journals, reports)	William T. Segui "Steel Design", 6th Edition, 2018. McCormac, J.C., "Structural Steel Design", 6th Edition, 2018				
Electronic References, Websites	William T. Segui "Steel Design", 6th Edition, 2018. McCormac, J.C., "Structural Steel Design", 6th Edition, 2018				